
Workflow Specification and Scheduling with
Security Constraints in Hybrid Clouds

Daniel S. Marcon⇤, Luiz F. Bittencourt†, Ramide Dantas‡, Miguel C. Neves⇤, Edmundo R. M. Madeira†,
Stênio Fernandes§, Carlos A. Kamienski¶, Marinho P. Barcelos⇤, Luciano P. Gaspary⇤, Nelson L. S. da Fonseca†
⇤Institute of Informatics, Federal University of Rio Grande do Sul – Av. Bento Gonçalves, 9500, Porto Alegre - RS - Brazil

{daniel.stefani, mcneves, marinho, paschoal}@inf.ufrgs.br
†Institute of Computing, University of Campinas – Av. Albert Einstein, 1251, Campinas - SP - Brazil

{bit, edmundo, nfonseca}@ic.unicamp.br
‡Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco – Av. Prof Luiz Freire, 500, CDU - Recife - PE - Brazil

ramide@ieee.org
§Federal University of Pernambuco – Avenida Jornalista Anı́bal Fernandes, Recife - PE - Brazil

sflf@cin.ufpe.br
¶Federal University of the ABC – Rua Catequese, 242, Santo André - SP - Brazil

cak@ufabc.edu.br

Abstract—Hybrid cloud management must deal with resources
from both public and private clouds, as well as their interaction.
When workflows are executed in a hybrid cloud, dependencies
among their components bring new factors to be considered dur-
ing specification, scheduling, and virtual machine provisioning. In
this paper, we describe three components, namely workflow code,
scheduler, and resource allocator, which enable the specification
and execution of workflows in hybrid clouds in the context of
the AltoStratus middleware. We present a case study that shows
the interaction among these components, and their applicability
in practice.

I. INTRODUCTION

The use of Cloud Computing brings challenges to large
enterprises, especially those that operate their own datacenters.
These organizations would like to take advantage of cloud
features (such as dynamic allocation of computing resources
[1]) using their previous investment on infrastructure. In this
context, security and privacy concerns [2], [3] tend to exist
around fewer aspects since data is kept in the organizations’
premises and not in the cloud provider machines. Such cloud
infrastructures are called private clouds. They can be seen as an
alternative to public cloud providers, which consist of public
and shared on-demand pay-per-use virtualized infrastructures.

Hybrid cloud solutions attempt to get the best of both
worlds, public and private clouds [4]. Using a hybrid cloud,
enterprises can employ their local resources to have a cloud-
like experience and still be able to use computing power from
public providers to accommodate transient demand surges, for
example. However, the hybrid solution imposes its own chal-
lenges [5]. In this context, the AltoStratus project1 aims to pro-
pose middleware techniques and mechanisms for composing,
executing, and managing services in hybrid and heterogeneous
computational cloud environments.

Deploying a new service or business process (workflow)
on a hybrid cloud raises the question of how to make the best
use of local resources while meeting performance and security

1http://www.dimap.ufrn.br/altostratus/english/

requirements of services and minimizing costs [6]. In this
paper, we address such problem by proposing an integrated
solution. In the proposed approach, the scheduler decides, for
each workflow, the set of tasks that will run in which platform
(private or public), with the goal of minimizing tenant cost
while meeting the workflow deadline. After determining the
amount of computing and network resources needed by the
workflow, the scheduler sends this information to a resource
allocation component, which will map the request onto the
cloud infrastructure taking security and performance criteria
into account. Therefore, the main contribution of this work is
to reconcile efficient scheduling and allocation of workflows
in hybrid clouds and the fulfillment of security requirements.

The remainder of the paper is organized as follows. Sec-
tion II briefly describes AltoStratus. Section III introduces
the proposed approach to schedule and allocate workflows in
a hybrid cloud infrastructure according to performance and
security criteria, while its evaluation is presented in Section IV.
Section V discusses related work, and Section VI concludes
the paper.

II. ALTOSTRATUS MIDDLEWARE

In this section we describe the AltoStratus middleware, pre-
senting its components and the interactions that the resource
allocation components, which are the focus of this paper, need
to perform.

AltoStratus is a middleware platform composed of two
layers (see Figure 1). The application developer interacts with
the bottommost layer, called workflow composition. This layer
provides a GUI for the creation and manipulation of service
workflows, allowing the specification of functional and non-
functional requirements that need to be met. Via the GUI,
workflows can be created directly by choosing the set of
concrete services that compose them. The developer also has
the option of creating semantic workflows based on abstract
tasks instead of concrete services. The set of concrete services
that implement these tasks are selected automatically at a later

This is a pre-print version.
The full version is available at the publisher's website.

Fig. 1. AltoStratus architecture.

stage, according to non-functional requirements provided by
the developer.

The second layer (service management) consists of six
main components: service monitor, adaptation, elasticity, se-
lection, scheduling (including security), and code generation.
In addition to QoS monitoring of deployed services, these
components are responsible for the composition, selection of
services and adaptation of workflows generated by the modules
of the previous layer.

The service management layer must also handle security
and resource management among different cloud platforms.
Security is taken into account when allocating resources in the
cloud infrastructure (more details are presented in Section III).
Resource management considers the creation and manipulation
of VMs located in different platforms, as well as elasticity and
load balancing among these VMs.

In general, AltoStratus has modules to enable several kinds
of interactions, such as high-level ones (for instance, directly
with tenants) as well as low-level ones (resource allocation in
the infrastructure). The main components of the architecture
are discussed next.

a) AltoStratus GUI: AltoStratus graphical interface en-
ables the developer to define new service compositions (or
workflows) either explicitly, by informing each concrete ser-
vice, or via abstract tasks. In the latter, concrete services that
match the desired tasks are selected based on their semantic
descriptions in the next stage. The composition can also be
partially defined, letting an automatic composition algorithm
complete the specification. The output of this stage is a
semantic specification, which serves as input to the selection
module.

b) Selection: The semantic workflow needs to be inter-
preted and the services that satisfy each workflow component
must be identified to generate the execution plan. This task is
accomplished by the selection module, which is thus responsi-
ble for choosing the specific set of services that will form the
execution plan (semantic language specification) in accordance

with the semantic workflow. Several alternative plans can exist
for the same input specification; the selection module chooses
the one that matches the workflow’s requirements, which is
then transferred to the code generation module.

c) Code Generation: This module performs the transla-
tion of the execution plan created by the selection module into
an executable service code. This code is packaged together
with other information about the new service (and any sub-
services in which it depends on) to form the Workflow Code
(WC).

d) Scheduler: Before the execution of the Workflow
Code, the scheduler obtains information about running services
from the resource monitor and chooses where the services
specified in the Workflow Code should be deployed based on
the workflow quality of service requirements.

e) Monitor: This module checks if the established QoS
for the services deployed are being served. In case a problem
with a virtual machine is detected, or if the QoS level is
below the specified threshold, it determines which modules
(elasticity and/or adaptation) should be called to solve this
issue (according to the policy associated with the service).

f) Elasticity: The elasticity module scales in or scales
out the amount of resources allocated for a given service in
accordance with the service QoS parameters. Toward this end,
it verifies if it is feasible to instantiate new VMs according
to elasticity policies contained in the WC and, if so, it calls
the scheduling module. This module also turns off virtual
machines when they are not used (i.e., when cloud demand
is low), to reduce costs. Note that the decision to shut down
virtual machines is controlled by service policies.

g) Adaptation: When elasticity fails (if elasticity is not
possible), or if the policy specifies that the elasticity module
should not be called, the adaptation module seeks alternative
services in the hybrid cloud to be used by the workflow to
meet the specified QoS requirements. In fact, it triggers the
selection module to get new execution plans for the workflow.
While the elasticity module attempts to solve the QoS problem
at the infrastructure level, the adaptation module selects an
alternative set of services to increase QoS.

III. WORKFLOW DEPLOYMENT AND SCHEDULING

For a workflow to be submitted to run in the hybrid cloud,
several management tasks must be performed. In this paper,
we are concerned with the following three steps:

1) Workflow specification: defines the necessary services
and their dependencies;

2) Workflow scheduling: defines where (i.e., in which vir-
tual machine instance) each service from the composi-
tion will run;

3) Virtual machine allocation: defines where (i.e., in which
physical machine) each virtual machine instance speci-
fied by the scheduler will run.

The set of AltoStratus components that are responsible for
these tasks in the hybrid cloud platform are the workflow code,
code generator, scheduler and resource allocator, which is part
of the scheduler module.

The semantic workflow is submitted to AltoStratus, which
is responsible for allocating, executing, and monitoring the
workflow. Prior to its deployment, however, the semantic
workflow must be converted into executable code. The result

of this process is the Workflow Code (WC), based on the
Service Code (described in Section II). The WC contains an
executable workflow (BPEL script), which is the translation
of the execution plan generated by the selection module.

The initial step required for running a concrete workflow is
the specification of resources needed and where each service is
(or will be) located in the cloud platform. This task should be
performed by the scheduling and resource allocation module,
according to the workflow QoS requirements. In this sense,
for each component of the service workflow, we envision three
possible scenarios:

1) The scheduler chooses a service, which is already up
and running, to be invoked for a workflow component;

2) The scheduler decides that a new service must be created
in a free virtual machine instance that is already running;

3) The scheduler decides that the best virtual machine
configuration for the service is one that does not have
any free instance running.

In the first case, the workflow component is just invoked
and, from the allocation viewpoint, no further action is re-
quired, since the service is already up in an instantiated virtual
machine. In the second case, there is no need to allocate
a virtual machine, but it is necessary to deploy the service
to be invoked, which is performed by AltoStratus. In the
third case, the virtual machine and the service must both be
instantiated. In particular, the VM is allocated in a physical
machine considering performance and security aspects. We
discuss the scheduling and VM allocation, as well as their
interaction, in more details next.

A. Scheduler
This component is responsible for choosing where each

workflow service must be deployed to execute. The role
of the scheduler is twofold. First, it decides which cloud
infrastructure will be used for each service: public or private
platform. Since the private cloud potentially lower cost, this
is the primary option if there are enough available resources.
Second, it defines the amount of resources necessary to run
each service, i.e., the type of VM instance in which the service
will run. The decision of the scheduler is based on user
requirements of QoS and on service-level agreements (SLAs)
signed with the cloud provider.

In particular, the scheduler can be called in three different
situations: (i) when a new workflow must be scheduled and
allocated in the cloud platform; (ii) when some (or all) com-
ponents should be rescheduled; or (iii) when additional VMs
must be allocated to guarantee the specified QoS parameters.
In any of these cases, a request to the scheduler is composed
of the maximum execution time (deadline) of the workflow,
and additional information about the services that compose
this workflow (such as previously monitored execution times
of these services). With such information, and the knowledge
of the cloud infrastructure, the scheduler can estimate service
execution time on different types of VMs as well as tenant
cost.

Each workflow application is represented by a directed
acyclic graph (DAG) G = (V, E), where V represents the set of
tasks and E the set of dependencies among tasks. The schedul-
ing results in a mapping between the set of workflow services
(nodes in the DAG) and the set of computing resources

(associated with a VM type, instantiated or not). That is, the
scheduler determines which virtual machine configuration is
adequate to run each workflow service in order to minimize
costs and meet the deadline. Therefore, the next step is to
allocate resources on the physical substrate. Toward this end,
the scheduler calls the resource allocation with the following
parameters for each workflow application: (i) a set of VMs;
(ii) the bandwidth needed by these VMs to communicate with
each other; (iii) and mutual trust relationships between tenants.
Next, we describe how the resource allocator utilizes these
trust relationships to allocate VMs to physical resources.

B. Resource Allocator

This module is part of the scheduler. It uses trust rela-
tionships between tenants in order to increase security in
the hybrid cloud platform while fulfilling network QoS re-
quirements. Such relationships denote whether application ai
from one tenant trusts application aj from another tenant.
These relationships are direct, binary, and symmetric (i.e.,
a tenant may either trust or not another tenant, with whom
he interacts; if there is trust, then it is reciprocal). They can
be established based on the web of trust concept [7] or by
matching properties contained within SLAs signed by different
customers and providers (which would be assisted by the front-
end responsible for receiving the requests and transferring
them to the allocation module).

The allocation process is divided into two steps: functions
F and G. The former distributes and maps applications into
virtual infrastructures2 (VIs) according to trust relationships,
while the latter allocates virtual infrastructures onto the phys-
ical substrate. In fact, each function has different objectives.
While function F maximizes the number of mutually trusted
relationships between tenants in the same VI, function G
minimizes the amount of network resources required for
the allocation of each VI in the physical substrate. These
two objectives, combined, can increase security for tenants
while maintaining high and efficient resource utilization for
providers. We provide a detailed description of the allocation
process in Marcon et al. [3].

C. Interaction between workflow scheduling and resource
allocation

The scheduler is responsible for receiving application re-
quests, with computing and networking demands, and to define
in which type of VM each workflow component will be
executed; the resource allocator, then, determines physical
servers that can hold these VMs, as well as the set of links to
be used for communication among such VMs.

We need to define in which occasions the scheduler must
call the resource allocator. Figure 2 shows an overview of the
interactions (and inputs/outputs) of the modules discussed in
this section. Upon receiving the workflow, the scheduler must
then decide where each workflow component will be executed.
In order to do so, it requires two sets of information: the
concrete workflow specification; and the cloud infrastructure
specification.

2The term virtual infrastructure is used to represent a logically isolated
domain (i.e., a set of virtual machines as well as the virtual network
interconnecting them).

Fig. 2. Workflow scheduling and resource allocation.

As previously defined, a workflow is represented by a
DAG, with information about tasks and data dependencies.
The hybrid cloud infrastructure, in turn, includes information
from the private cloud (i.e., the set of available heterogeneous
resources and the network that interconnects such resources),
and information from the public cloud platforms (computing
and network resources and the price of such resources).

This fine-grained information allows the scheduler to op-
timize the amount of resources allocated to each workflow.
In fact, the scheduler aims at minimizing monetary costs
of tenants while maintaining the deadline specified for the
workflow.

The scheduling process results in an association of workflow
tasks (or nodes in the DAG) with computing resources, where
each computing resource is associated to a type of virtual
machine to be used. That is, the scheduler determines which
virtual machine configuration is sufficient to perform each
task in the workflow, in order to minimize costs and meet
the deadline specified by the user.

The scheduling output can direct workflow components for
VMs in four different states (Figure 2): i) VMs that are already
allocated and running in the private cloud; ii) unallocated VMs
at the private cloud; iii) already allocated VMs in the public
cloud; and iv) unallocated VMs in the public cloud.

Workflow tasks scheduled to run in already deployed VMs
(both in private or public clouds) do not require interaction
with the resource allocator, as their VMs are already running
on a given server. In contrast, if the scheduler decides that new,
unallocated VMs are necessary, the next step is to determine
in which physical machines such VMs can run in order to
provide QoS guarantees. Thus, each workflow submission
is scheduled independently, and the scheduler sends to the
resource allocator a list of VMs to be created, the amount
of bandwidth needed by these VMs to communicate with
each other and trust relationships between tenants. Then, the
resource allocator maps such requests (computing and network
resources) in the cloud infrastructure, in a process composed
of functions F and G, as previously discussed.

In general, the scheduler operates in the allocation decision
of each workflow independently. It can be inserted in a
personal/local context of the hybrid cloud tenant. Each user,
in turn, relies on other users, which reflects the trust between
them. Finally, the resource allocation strategy (based on trust
relationships between tenants) uses the information in the
workflow scheduler to allocate resources, with the purpose
of mitigating selfish and malicious attacks in the intra-cloud
network (e.g., the consumption of an unfair share of the
network to complete tasks in a shorter amount of time).

IV. EVALUATION

We have developed a simulator that models a hybrid cloud
platform, in order to evaluate the integration between the
scheduling and resource allocation module.

A. Methodology
A set of DAGs is first scheduled independently (according

to the process described in Bittencourt and Madeira [6]) and,
then, the output is transferred to the resource allocator.

The set of DAGs used in the simulations were: Montage [8],
AIRSN [9], CSTEM [10] and MDP [11]. In fact, Montage was
generalized, resulting in DAGs with size in the interval [5,100]
nodes. Additionally, random DAGs with a size between 5
and 100 nodes were generated using the method described
in Sakellariou and Zhao [12]. Each task has a computing
cost in the interval (500,4000). For each type of DAG, we
performed simulations using communication to computation
ratio CCR = 1.0.

The environment was configured as two clouds: one private
and one public, in which resources are allocated by the
resource allocator. The private cloud platform R has a total
amount of resources in the interval [2, 10]. Each resource has
its processing capacity obtained from a uniform distribution in
the interval (10,100). Each simulation was repeated 500 times.

The hybrid platform links are classified in three types:
internal links of the private cloud, internal links of the public
cloud and links that connect these platforms. Each link type
has an associated capacity: (100, 100, 10), (100, 500, 10)
and (100, 1000, 10), where the elements correspond to the
bandwidth within the private cloud, the bandwidth within the
public cloud and the bandwidth that connects the private and
public clouds, respectively.

VM processing capacity was fixed, in each simulation, in the
interval (50,150). Without loss of generality, we follow prior
work [1] and assume that all VMs are equal, considering only
virtual machines with one processing core. Additionally, each
workflow has a maximum deadline D, in 2.5⇥CP , 3.5⇥CP
and 4.0⇥CP , where CP is the execution time of tasks in the
critical path of the DAG at the best available resource.

Scheduling each workflow results in a set of VMs to be
allocated in the public cloud in case the private cloud does
not have enough resources (Figure 2). The scheduling process
generates, for each workflow, the amount of resources that
need to be allocated in the public cloud platform and calls
the resource allocator. Each request is associated with an
identifier, the number of VMs needed, the bandwidth needed
by communication between VMs of the same workflow and
the amount of time necessary for the execution. Moreover,
the resource allocator also receives mutual trust relationships

between tenants. They were generated through direct relation-
ships between users in a random graph with degree of each
vertex (tenant) following a distribution P (k) / 1

k .
Resource allocation evaluation in the public cloud focuses

on the trade-off between the gain in security for tenants and
the cost (internal resource fragmentation) it imposes on cloud
providers. Following related work [1], [2], [13], [14], the cloud
physical substrate was defined as a three-level multi-rooted
tree topology. It consists of 1,020 servers at level 0, each with
4 VM slots (i.e., 4,080 VMs in the cloud infrastructure). Each
virtual infrastructure was defined as a tree-like topology with
similar size in comparison to the other VIs.

B. Simulation Results

Improved security for tenants. Security is quantified by
measuring the number of mutually untrusted tenants assigned
to the same VI. Therefore, the objective is to minimize this
value, as it represents how exposed applications are to attacks.
We verify trust relationships between tenants in two scenarios:
when allocating application batches (i.e., when all application
requests are known beforehand), and when applications arrive
without prior knowledge (in an online setting). The results are
compared with the baseline scenario (current cloud allocation
scheme), in which all tenants share the same network.

Figure 3 shows the number of mutually untrusted relation-
ships according to the number of VIs offered by the provider.
The results show that the number of workflows allocated is not
the main factor to increase security, but rather the number of
VIs offered by the provider. In general, we find that the number
of mutually untrusted relationships decreases, and therefore
security increases, logarithmically according to the number of
VIs.

�

����

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � � 	
 ��

�
�

�

�
���

��
�

�

�
�

�
�
��

�
��

�
�
�
��

��
�

�������� �!"�

��� �����#�
����
���������#�
����
���������#�
����

Fig. 3. Security when allocating workflow batches.

We also measure how security increases when workflow
requests arrive without prior knowledge. The arrival rate is
given by a Poisson distribution with a mean of 12 requests
every 100 time units. Figure 4 depicts how the number of
mutually untrusted relationships varies during 14,000 time
units. We see that the greater the isolation among tenant
applications, the higher the security, since the number of
mutually trusted relationships inside each VI is maximized.
However, the level of security offered by the provider tends to
stabilize after a certain number of VIs, as security increases
logarithmically.

�

�����

�����

�����

�����

�����

�����

�����

� ���� ���� ���� 	��� ����� ����� �����

�
��

���
��
�
��
�
��
�
�
��
�
�

��
�
�
��
��
�

��������
���������

�
������
�� !�
�� !�

Fig. 4. Security in an online setting.

Low resource fragmentation. The creation of VIs and
grouping of workflows may restrain the allocation process
because of internal fragmentation of resources (i.e., the cloud
might have enough available resources to allocate an incoming
request, but no VI alone has the necessary amount of resources
to accept the request). We adopt a simple admission control,
similar to Amazon EC2 [15], which rejects an application if
it cannot be allocated upon its arrival.

Figure 5 shows the acceptance ratio of requests according to
the cloud load. Workflow requests begin to be rejected when
the load is around 96% for 15 VIs and 95% for 30 VIs. The
acceptance ratio is significantly reduced only when the load
goes over 97%. Although this is a side effect of our approach,
we consider that this cost is pragmatically negligible, due to
the fact that public cloud platforms (such as Amazon EC2)
operate their datacenters with 70-80% occupancy [16].

�

���

���

���

���

�

� ��� ��� ��� ��� ��	 ��� ��
 ��� ��� �

�

�
�
��
�

�
��
�
��
�

����

��������
�	 ���
�� ���

Fig. 5. Acceptance ratio according to the cloud load.

Figure 6, in turn, depicts the overall acceptance ratio of
requests. Initially, all requests are accepted because of the high
amount of available resources in the cloud. As time passes and
the load increases, some requests are rejected, resulting in a
convergence period. Since rejections occur at different loads
for different settings (as shown in Figure 5), the best scheme is
not clear. Finally, the acceptance ratio stabilizes around 52%,
showing a negligible overhead (acceptance 0.5% lower) when
compared to the baseline. Thus, we conclude that it is possible
to increase security with minimal addition of rejected requests.

V. RELATED WORK

In this section, we highlight some relevant work in the
field of workflow management and scheduling, as well as in

���

���

���

���

���

���

	

�
��� ���� ���� ���� 	���� 	
��� 	����

�
��

�
��
�
�

��
�
��
�

�����������������

���
���

	� ���
�� ���

Fig. 6. Overall cloud acceptance ratio.

network sharing and security.
Workflows. Workflow management and scheduling have

been widely studied [8]. In utility grids and hybrid clouds, the
scheduling problem has been tackled considering processing
capacity and monetary costs [4], [11], [17]. Yu et al. [11]
proposed a deadline-driven cost-minimization algorithm. The
Deadline-MDP (Markov Decision Process) algorithm breaks
the DAG into partitions, assigning a maximum finish time for
each partition according to the deadline given by the user. Abr-
ishami et al. present the Partial Critical Paths (PCP) algorithm
[18]. The PCP algorithm schedules the workflow backwards,
searching for not scheduled partial critical paths. Constraints
are added to the scheduling process when the scheduling of a
partial critical path fails, starting the scheduling process again.
This algorithm presents the same characteristics of MDP,
however with higher time complexity, since a combinatorial
number of re-schedulings may occur. A self-adaptive global
search optimization technique called Particle Swarm Optimiza-
tion (PSO) is utilized to schedule workflows in the algorithm
proposed by Pandey et al. [17]. The algorithm was developed
to work in cloud computing environments with one-level SLAs
and on-demand resource leasing. It does not consider multi-
core resources nor workflow deadlines, focusing solely on
the monetary cost minimization. None of these algorithms
consider security issues, which led us to the proposed approach
for integrating the scheduling and the security into a module
in the AltoStratus project.

Network sharing and security. Recent proposals try to in-
crease network guarantees and security for tenants by design-
ing network-aware allocation algorithms. These approaches
can be divided in two main classes: i) proportional sharing
[2], [19], which focus on providing fair network sharing at
flow-level in accordance with weights assigned to tenants;
and ii) network virtualization [1], [13], [20], which isolates
one tenant (or application) per virtual network. The former,
however, adds substantial management overhead to control
how network resources are shared (since large-scale cloud
platforms can have over 10 million flows per second [21]),
while the latter results in low utilization of resources (because
they statically reserve bandwidth according to the application
peak demand).

VI. CONCLUSION

The use of hybrid cloud platforms requires an optimized
and efficient scheme to utilize resources from both private

and public clouds, in a way that minimizes tenant cost and
meets workflow requirements (in particular, performance and
security). To this end, we have proposed a strategy composed
of two steps: the scheduler and resource allocator. The for-
mer receives workflow requests and decides the amount of
resources needed by each workflow task and in which platform
each task will run. The latter maps requests onto the cloud
infrastructure according to performance and security criteria.
In future work, we intend to consider other requirements
when scheduling and allocating workflows, such as energy
consumption and resiliency.

ACKNOWLEDGMENT

We would like to thank FINEP, CTIC/RNP and CNPq
(through the SecFuNet project) for the financial support.

REFERENCES

[1] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM, 2011.

[2] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in USENIX NSDI, 2011.

[3] D. S. Marcon, R. R. Oliveira, M. C. Neves, L. S. Buriol, L. P. Gaspary,
and M. P. Barcellos, “Trust-based grouping for cloud datacenters:
improving security in shared infrastructures,” in IFIP TC6 Networking,
2013.

[4] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca, “Schedul-
ing in hybrid clouds,” IEEE Communications Magazine, vol. 50, no. 9,
pp. 42 –47, September 2012.

[5] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and
F. De Turck, “Network-aware impact determination algorithms for
service workflow deployment in hybrid clouds,” in CNSM, 2012.

[6] L. F. Bittencourt and E. R. M. Madeira, “HCOC: A cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of Internet
Services and Applications., 2011.

[7] P. R. Zimmermann, The official PGP user’s guide. Cambridge, MA,
USA: MIT Press, 1995.

[8] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, vol. 13,
no. 3, pp. 219–237, 2005.

[9] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde, “A notation and
system for expressing and executing cleanly typed workflows on messy
scientific data,” SIGMOD Record, vol. 34, no. 3, pp. 37–43, 2005.

[10] A. Dogan and F. Özgüner, “Biobjective scheduling algorithms for ex-
ecution time-reliability trade-off in heterogeneous computing systems,”
Computer Journal, vol. 48, no. 3, pp. 300–314, 2005.

[11] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in e-Science and Grid Comput-
ing, 2005.

[12] R. Sakellariou and H. Zhao, “A hybrid heuristic for dag scheduling on
heterogeneous systems.” in IEEE IPDPS Workshops, 2004.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in ACM CoNEXT, 2010.

[14] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in ACM SIGCOMM, 2012.

[15] “Amazon ec2 api ec2-run-instances,” Amazon, 2013, available at : http:
//goo.gl/8S97La.

[16] R. Bias, “Amazon’s EC2 Generating 220M,” Cloudscaling, 2011.
[Online]. Available: http://goo.gl/d1Vai.

[17] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in IEEE AINA, 2010.

[18] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven scheduling
of grid workflows using partial critical paths,” in IEEE/ACM GRID,
2010.

[19] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese,
“Netshare and stochastic netshare: predictable bandwidth allocation for
data centers,” ACM SIGCOMM CCR, vol. 42, no. 3.

[20] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: a cloud
networking platform for enterprise applications,” in ACM SoCC, 2011.

[21] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM IMC, 2010.

